Thursday, March 19, 2015

Planck and Quantized Energy

Planck’s discovery, which led to what is now called ‘quantum’ mechanics, includes the notion that energy, measured in any of the standard units like BTUs or joules or ergs or calories or kilowatt-hours, is not available in every quantity represented by an arbitrary or random real number.

This would mean that there is at least one number N such that it is impossible to have N joules of energy. The word ‘quantize’ is used to describe this situation.

This would mean that energy quantities, or amounts, when graphed, e.g., on a cartesian plane, do not correspond to that type of infinity of which it is always true that, for any two points, there is an infinity of points between them.

Energy levels thus depicted would yield a graph of ‘steps’ like a staircase - Planck used the word stufenweise - as energy is available in one quantity, and then another higher or lower quantity, jumping over conceivable quantities in between. In Planck’s immediate context, this referred to the energy released by a single atom - electromagnetic energy - as it moved between higher and lower energy states.

A number of mysteries center around the process whereby energy levels jump the gap between possible energy levels, skipping over other conceivable levels.

Planck began to discover this phenomenon in the context of heat radiation, building on the research and measurements made by Heinrich Rubens and Ferdinand Kurlbaum. Planck developed a mathematical model which accurately predicted future values for the research of Rubens and Kurlbaum (sometimes spelled ‘Curlbaum’). Werner Heisenberg describes this pivotal moment:

Diese Entdeckung bezeichnete aber erst den Anfang der eigentlichen theoretischen Forschungsarbeit für Planck. Wie lautete die korrekte physikalische Interpretation der neuen Formel? Da Plank von seinen früheren Untersuchungen her die Formel leicht in eine Aussage über das strahlende Atom (den sogenannten Oszillator) übersetzen konnte, muß er wohl bald herausgefunden haben, daß seine Formel so aussah, als könnte der Oszillator seine Energie nicht stetig ändern, sondern nur einzelne Energiequanten aufnehmen, als könnte er nur in bestimmte Zuständen oder, wie der Physiker sagt, in diskreten Energiestufen existieren. Dieses Ergebnis war so verschieden von allem, was man aus der klassischen Physik wußte, daß Planck sich sicher am Anfang geweigert hat, es zu glauben. Aber in einer Periode intensivster Arbeit während des Herbstes 1900 rang er sich schließlich zu der Überzeugung durch, daß es keine Möglichkeit gab, diesem Schluß zu entgehen. Von Plancks Sohn soll später erzählt worden sein, daß sein Vater ihm, als er Kind war, auf einem langen Spaziergang durch Grunewald von seinen neuen Ideen gesprochen hätte. Auf diesem Weg hätte er ihm auseinandergesetzt, daß er das Gefühl habe, etweder eine Entdeckung allerersten Ranges gemacht zu haben, vielleicht vergleichbar mit den Entdeckungen Newtons, oder sich völlig zu irren. Planck muß sich also um diese Zeit darüber klargeworden sein, daß seine Formel die Grundlagen der Naturbeschreibung erschütterte; daß diese Fundamente eines Tages in Bewegung geraten und von ihrer gegenwärtigen, durch die Überlieferung bestimmten Stelle aus in eine neue und damals völlig unbekannte neue Gleichgewichtslage übergehen würden. Planck, in seinen ganzen Anschauungen ein konservativer Geist, war keineswegs erfreut über diese Folgerungen; aber er veröffentlichte sein Quantenhypothese im Dezember 1900.

Max Planck’s discovery that energy was, at least in these contexts, quantized proved interesting on several levels. It worked against the intuitive understanding of Newtonian mechanics.

In Newtonian physics, as it had hitherto been conceived, force and work and energy and power were conceptualized as increasing and decreasing along a curve of whose points, each of which represented a level or amount of energy, it was true that there would be an infinity of points between any two of them.

Beyond dismantling the intuitive understanding of Newtonian mechanics, Planck’s quantum mechanics had further implications. The understanding of electromagnetic energy at the atomic and subatomic levels would be shaped significantly by the Planck’s discovery.

The effects of quantum mechanics make themselves felt mostly at the atomic and subatomic levels. Newtonian physics still describe the world at the level of railroads and automobiles measured within the usual practical tolerances.

Planck’s discovery of quantized energy led to a series riddles and paradoxes within physics and philosophy, revolving around the notions of causation and around the role of the human observer in measurement. One result of such reflection is that the definition of ‘cause’ has been rethought and potential new definitions for that word have been proposed. It is safe to say that, a little more than a century after Planck’s breakthrough, the implications of his work have yet to be fully catalogued and understood.